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Work in Mechanical Systems 
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Abstract 
Traditionally in thermodynamics mechanical work is defined in terms of PdV. Al- 
though it is empirically correct to consider all mechanical work in terms of  PdV, 
we shall show that it is theoretically incorrect to do so. More specifically, from a 
theoretical perspective, mechanical work should often be expressed in terms of  
VdP and not PdV. 
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1. INTRODUCTION 

The basis of thermodynamics was formulated in the 
19th century, and the 20th-century use of statistical 
physics just served as a continuation of its proof. 
Accordingly, to many, thermodynamics is void of any 
doubt. However, such an assertion puts statistical 
ensembles over and above simple differential calculus 
and possibly common sense. 

The first law of thermodynamics is often written in 
the form ~ 

du = dq - dw, 

where du represents the infinitesimal change to a 
system's internal energy, while dq and dw, respec- 
tively, represent any heat absorbed and any work 
done by that system. We traditionally limit dw to the 
isobaric, isothermal case, writing 

dw = Tds = du + Pdv, 

where ds and dv, respectively, represent any infini- 
tesimal change to the system's entropy and volume, 
while T and P, respectively, signify some constant 
temperature and pressure. Combining (1) and (2) 
gives "the fundamental equation of equilibrium 

,, 0Y thermodynamics for homogeneous fluids : 

ds=(du+ P&)/T. 

Another fundamental traditional thermodynamic 
principle is the second law: 

dS >_ 0. (4) 

A statistical physics representation of entropy is given by 

S=k ln f2 ,  (5) 

where k is Boltzmann's constant and f2 represents the 
number of permissible states. 

Entropy's indoctrination, via statistical physics, has 
become essential to all scientific disciplines. (5-8) 
Volchan (1) points out that "thermodynamics is an 

(1) incredibly successful theory, in spite of being marred 
by a long history of conceptual problems ... Still it is 
a phenomenological theory in the sense that there is 
no hint about underlying mechanism that could 
explain the thermodynamic laws in terms of more 
basic constituents." 

This paper will demonstrate that a simpler thermo- 
dynamic perspective does exist for mechanical 

(2) systems. Its feasibility does not necessitate statistical 
mechanics, quantum theory, or any other elaborate 
device. Rather, it is based upon simple differentials of 
the enthalpy relation! The problem of acceptance may 
be more enshrined in human nature than logic, as 
those well versed in thermodynamics may distance 
themselves from any prospect of statistical mechanics 
becoming a valid mathematical device, which pro- 
vides results rather than reasons. 

Before we continue, it should be stated that there 
(3) are those who question certain fundamental principles 

of traditional thermodynamics, that is, the small but 
growing group who are questioning the validity of the 
second law of thermodynamics. (9-13~ 
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2. SIMPLE DIFFERENTIATION 

Consider the fundamental parameters that define 
any system: entropy (S), absolute temperature (T), 
pressure (P), volume (V), and energy (E). S and T are 
the thermal parameters, while P and V are the me- 
chanical parameters. E is taken to represent all other 
forms of energy, including the internal energy (U) 
associated with interactions between the system's 
molecules and energies associated with any tensile 
surfaces. The parameters are related by 

T S :  E + PV ,  (6) 

with the fight-hand side of (6) being the enthalpy 
relation. The simplest approach to thermodynamic 
change should be attainable by differentiating (6): 

d(ST)  : dE + d (PV) .  (7) 

Some would argue that thermodynamics is more than 
the above simple differentiation! Accordingly, we 
utilize the inherent physical principles held within (1) 
through (5) and employ differentiation when it suits 
those physical principles. Should we be satisfied with 
believing that the physical principles are more valid 
than differential calculus? Perhaps. But what if this is 
not the case? 

If the change is both isobaric and isothermal, then 
(7) becomes the traditional equation for work (W): 0-3) 

W = TdS = dE + PdV.  (8) 

By limiting mechanical work to volume change, from 
a purely mathematical perspective, we have failed to 
equally treat pressure and volume as parameters of 
relevance. Must we believe that work cannot be 
associated with pressure change? This seems contrary 
to Gibbs, 04) who considered the work required to 
nucleate a globule in terms of pressure change. 1 

Furthermore, when we consider the nucleation of 
droplets or bubbles, the energy required for the 
nucleation process is often defined in terms of work. 
The work required is the energy needed to form any 
tensile layer plus any energy changes associated with 
P V  space (enthalpy). Interestingly, traditional ther- 
modynamics, when applied to nucleation theory, has 
led to numerous complicated theories, (15-z2) none of 
which seem to properly explain the energy require- 
ments for either bubble or droplet nucleation. 

Based upon the very premise that we should treat 
pressure and volume equally in terms of the work 
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required for nucleation, a correlation between theory 
and laser-induced bubble nucleation has been found 
by Mayhew. (23) The correlation was obtained by 
examining the data from Wolfrum et al., (24) wherein it 
was stated that current theory cannot properly explain 
their findings for the energy required to nucleate 
water vapor bubbles. The fit between data and 
Mayhew's bubble equation z has been confirmed by 
one of Wolfrum's associates (W. Lauterbom3). 

Mayhew (23) has hypothesized that a general equa- 
tion for the work done by, or on, any system, be 
written as follows: 

W : dE + d (PV) .  (9) 

Of course the problem for most scholars in accepting 
(9) is that it does not necessitate the convoluted path 
of limiting work to the isobaric isothermal case, nor 
does it define thermodynamics in terms of an ensem- 
ble of molecules with certain energy states. It simply 
treats pressure and volume equally as parameters of 
relevance! Its simple differentiation is no longer 
biased against by questionable physical principles! 

3. IDEAL GAS 

Consider an ideal gas in terms o f  P V  space. Both its 
internal energy and total energy remain constant 
during adiabatic compression or expansion, within an 
insulated container. In this case we can write 

P d V  : -VdP. (10) 

In (10) we considered pressure and volume as being 
equals. Interestingly, the following conundrum arises. 
If volume change multiplied by pressure (PdV) 
signifies mechanical work, then why isn't the energy 
associated with the pressure change (VdP) considered 
work? We accept that one counters the other in (10). 
One may argue that (10) can be explained in terms of 
(1) with dw = p d v  and dq = vdp. But is that a simpler 
explanation than saying that the total work done on 
the gas is zero because the work associated with 
pressure change (VdP) counters that associated with 
volume change (PdV)? 

4. WALLS 

Traditional thermodynamics in part dodges the 
previous conundrum by considering that the work is 
done on the system's walls (Reif,(4Ip. 77): "consider 
an arbitrary slow expansion of the system from the 
volume enclosed by the solid boundary to that en- 
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closed by dotted boundary in" Fig. 1. "If  the mean 
pressure is P ,  the mean force on an element of area 
dA is P dA in the direction of the normal n. If the 
displacement of this element of area is by an amount 
ds in the direction making an angle 0 with the nor- 
mal, then the work done by the pressure on this area 
( P  dA)ds cos 0 = P dv, where dv - (dAds cos 0) is 
the volume of the parallelepiped swept out by area 
element dA in its motion through ds. Summing over 
all the elements of area of the boundary surface gives 
for the total work" d W  = fi dV. 

If traditional thermodynamics is correct in its asser- 
tion that the work is done on the container's walls in an 
expanding volume, then it must be the container's walls 
that perform the work when the system is contracting. 
Certainly, the above has some validity when applied to 
walls that are elastic in nature (i.e., a balloon), but we 
can readily disprove the generalization of such a thought 
process by considering the expansion and/or compres- 
sion of a sealed cylinder of ideal gas. 

5. WORK IN THE EXPANSION AND COM- 
PRESSION OF A SEALED CYLINDER 

Consider a hermetically sealed cylinder filled with 
an ideal gas, at 1-atm pressure, as is shown in Fig. 2. 
Next we pull the piston outward a distance, dx, with a 
force of magnitude F, as is shown in Fig. 3. The work 
(W) required for the piston to move dx is 

W = Fdx. (11) 

Dividing the force (F) by the piston's surface area (A) 
gives the pressure (P = F/A). Also, multiplying the 
distance, dx, by the piston's surface area (A) gives the 
volume (V = Adx). Accordingly, 

W = (F  / A)Adx = PdV. (12) 

Up to now we have considered that work simply 
depends upon the endpoints. In order to solve (12) 
traditional thermodynamics realized that the force we 
need to apply to the piston increases the farther away 
from the neutral position we are. Since the force 
varies depending upon position, we must use the 
concept of the integration of increments of work: W = 
~dw. Also, we substitute in for P = NkT/V, which is 
based upon the ideal gas law, where k is Boltzmann's 
constant and N represents the number of gas mole- 
cules. We also let subscripts 1 and 2, respectively, 
represent the initial and final states and obtain 

W = I~i' Pdv = NkT  Iv[' dv / v. (13) 

Figure 1. The arbitrary expansion of a system of volume V. 
Sketched from Reif(Ref. 4, p. 77). 

Integrating, we arrive at the traditional answer 

W = (NkT) ln (V  2/Vz). (14) 

When the gas inside the cylinder is considered ideal, 
the energy change of that gas is zero, as defined by 
(10). So on what is the work, as is defined by (14), 
done? The traditional argument is that the work goes 
into the walls of the piston-cylinder apparatus itself. 
To this author it lacks logic that energy is stored 
anywhere within the piston-cylinder apparatus! 

The reality is this: When we release the plunger, the 
higher-pressure atmosphere pushes the piston back to 
its neutral position. Since the atmosphere drives the 
piston back, the atmosphere is doing the work. 
Therefore, during expansion, work must have been 
done on the surrounding atmosphere and not on the 
system's walls. 

Consider it this way. If we were to raise the ex- 
panded cylinder up into the atmosphere, eventually 
we would reach an altitude where the pressure outside 
the cylinder equals the pressure inside the cylinder. 
The act of bringing both the cylinder and its gaseous 
contents to this higher elevation requires energy. The 
work required to elevate only the cylinder's gaseous 
contents should equal the work that was required to 
expand the cylinder in the first place. 

Let us consider that the work is being done on the 
system's surroundings, i.e., Earth's atmosphere. The 
correlation between the height above Earth's surface 
and atmospheric pressure is obtained from the law of 
atmospheres: 
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Figure 2. A gas-filled expandable cylinder. Figure 3. The expansion of the cylinder in Fig. 2. 

P(h) = Po e-''g~/(kr), (15) 

where P(h) is the function of how the pressure 
changes with height, while P0 is a constant taken as 
the pressure at height h = 0 and m' is the molecular 
mass. 

Dividing both sides by the constant P0 and then 
taking the natural logarithm, we obtain 

ln[P(h)/ Po] = - m ' g h / k T .  (16) 

Then, expressing the relation in terms of height (h), 
we obtain 

h = (kT/(m'g)) ln[P 0 / P(h)]. (17) 

Let h represent the elevation above Earth's surface 
and M be the total mass of the ideal gas inside the 
cylinder. Then the work required to raise Mto h is 

w = Mgh,  (18) 

where g is the gravitational constant. By substituting 
(17) into (18) and canceling the gravitational constant 
(g), we obtain for work 

W = (MkT / m')ln[P 0 / P(h)]. (19) 

Mass divided by the molecular mass gives the number 
of molecules (N). Therefore we can rewrite (19) as 

W = (NkT)In[P o / P(h)]. (20) 

Interestingly, we could rewrite (20) in terms of 
volume. We realize that P(h) is nothing more than the 
pressure within our piston-cylinder apparatus when 
the apparatus is in the expanded position and that P0 
was the original pressure inside our apparatus. For the 
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compression/expansion of an ideal gas, PI/P2 = V2 = 
Vl. Obviously, we can rewrite (20) in terms of volume 
change, and the result becomes (14), which is the 
traditionally accepted result. Which equation is 
correct depends upon your choice: (1) Work was 
mysteriously done on the walls of the piston-cylinder 
apparatus, or (2) work was done on the surrounding 
atmosphere. 

The traditional thought that work is solely defined 
in terms of volume change may be based upon a 
series of misconceptions. Certainly, defining work in 
terms of (14) may be empirically valid but it is 
conceptually weak because it requires energy to be 
stored in all walls. In rnany applications logic may be 
better served if we express the work done in terms of 
pressure change, as (20) does. 

6. WORK IN PRESSURE INCREASE 

To emphasize the last point consider a common 
mass-transfer mechanical device involving the 
addition of gaseous molecules to a rigid vessel, thus 
increasing the vessel's pressure. Consider a rigid 
vessel containing X gaseous molecules whose internal 
pressure is 1 atm. Based upon the ideal gas law, the 
energy within our system can be expressed as 

P V  = XkT. (21) 

Consider a mechanical device that now isothermally 
increases the pressure in our rigid vessel by pushing Y 
more molecules into the vessel, so the vessel now 
contains X + Y molecules. The energy is now defined 
by P V = (X + Y)kT. 

Since V is constant, the pressure increase (dP) due 
to the addition of Y molecules into the vessel is 

dP= YkT /V. (22) 

From the perspective of the system, that being the 
vessel and all the molecules within, the work done 
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(W) is the pressure increase multiplied by the volume 
(V) over which the pressure increase occurs: 

W : VdP : YkT. (23) 

Once more, traditional thermodynamics only considers 
the work done in terms of volume change in some 
isobaric processes. Equation (23) tells us that, from the 
perspective of the higher-pressure vessel, the work 
should be expressed in terms of VdP, where dP 
represents the pressure change in the vessel's volume 
V. From the perspective of the mechanical device, at 
constant 1-atm pressure, the work it performed on the 
high-pressure system could be expressed in terms of 
PdV, where dV is the volume of ideal gas driven into 
the vessel when that volume is measured at pressure P. 

It is understood that the above is overly simplified. 
Certainly, a more general case considers the realistic 
rather than the ideal, meaning that changes to bonding 
and other energies must be considered. Then again we 
could change our perspective and view the problem 
from the perspective of viewing Earth's atmosphere, 
and we should get an equally persuasive answer. No 
matter, the simple drives home a point better than the 
complicated ever could. The point is that whether we 
choose to express the work done by a machine in 
terms of PdV or VdP all depends upon our perspec- 
tive. The implication is that traditional thermodynam- 
ics chooses to define work only in terms of PdV, out 
of convenience. In so doing, traditional thermody- 
namics ignores the simplest explanation of them all, 
that being we should start by expressing work in 
terms of (9)! 

7. CONCLUSIONS 

The concept that traditional thermodynamics ~re- 
sents laws in terms of its most basic constituents 0) is 
being challenged. The origin of the problem is our 
traditional understanding of work and heat, namely 
we separate the two entities before we even begin to 
contemplate the question at hand. The traditional 
understanding of work is given by (8): W = dE + PdV. 
We all acknowledge that (8) represents the mechani- 
cal work in isothermal, isobaric processes. Bewilder- 
ing is the fact that traditional thermodynamics has 
limited all forms of work, mechanical and otherwise, 
to being defined by (8), even though many mechani- 
cal processes are clearly not isobaric. When contem- 
plating a problem we should begin by defining work 
in terms of(9): W = dE + d(PV). 

Most importantly, the way we decide to define 
work is often based upon our perspective. By using 

(9) we can consider the work from the perspective of 
an isometric higher-pressure system. Then the theo- 
retically correct way to express its energy advantage 
over its surroundings should be W = dE + VdP, while 
from the perspective of one standing on isobaric Earth 
the work that can be obtained from the isometric 
higher-pressure system may be defined in terms 
of(S). 

Furthermore, traditional thermodynamics is ham- 
pered by the dogma that the work is magically done 
on the system's walls. However, such a concept 
seemingly lacks logic if the walls are not elastic. It is 
much more palatable to think in terms of the work 
being done on Earth's atmosphere! Moreover, (20), W 
= (NkT)ln[Po/P(h)], proves that it is empirically 
correct to do so! Once more, whether we choose to 
define work in terms of volume change versus 
pressure change is somewhat arbitrary, even though 
logic dictates one over the other. 

Accepting that work cannot be limited to volume 
change raises questions as to whether certain laws 
should be reexamined. Generalizations should be 
removed. That is, perhaps the first law should be 
simplified to the following statement: Energy is 
conserved. 

Since work is best described by (9), we should also 
question the isobaric change to an ensemble of the 
molecular energy states (5): S = k In g2. Specifically, 
we use such statistical arguments to validate what is 
taught in thermodynamics, but has anyone ever asked 
what would happen if the number of molecular 
energy states were a simple consequence of a system 
of molecules, at a given pressure and volume, plus 
any energy considerations associated with the specific 
nature of the molecules? Is our traditional approach 
correct or do we use it because considering molecular 
energy state change for the isometric case is not as 
easily visualized? Whatever our reason may be, the 
net result of using differentials, if and only if they suit 
the isobaric changes to energy states, may be compli- 
cating the simple. It must be said that we have not 
proven anything at the statistical level. But we should 
start the questions. 

Why has mechanical work not been previously 
questioned in this manner? Perhaps it has but those 
being quizzical dwelled upon statistical physics. 
Perhaps the answer resides in the fact that we live 
on/in an isobaric (1-atm) open system. No matter, the 
time has come to question some of the cornerstones of 
thermodynamics. 

Received 4 November 2005. 
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R~sum~ 

Traditionnellement en thermoclynamique, le travail mdcanique est ddfini en ter- 
rues de PdV. Bien que ce soit empiriquement correct de consid~rer tout travail 
m~canique en termes de PdV, nous d~montrerons qu 'il serait erron~ de proc~der 
ainsi d'un point de rue th~orique. Plus spdcifiquement, la th~orie impose que le 
travail m~canique soit souvent exprim~ en termes de VdP et non pas en termes de 
PdV. 

Endnotes 
i The work (W g t) required to nucleate a Gibbs 

globule is Wgt = Agtcr + Vgl(Pgl- Pt), where Agl is 
the globule's surface area, cr is the globule's sur- 
face tension, Vgt is the globule's volume, Pgl is the 
pressure inside the globule, and Pt is the pressure in 
the surrounding liquid. 

2 The work (W o) required to nucleate a bubble is (23~ 
Wb = Abet + Ut - Ua + VZC~ -- VIPt, where AbCr is the 
energy required to form the tensile layer; Ul and Ub, 
respectively, represent the bonding energy in the 
liquid and bubble states; Vb and Vl, respectively, 
represent the volume in the bubble and liquid states; 
and Pb and Pt, respectively, represent the pressure 
in the bubble and liquid states. 

3 Personal correspondence via e-mail. In an effort to 
confirm my work I mailed some notes to the 
Wolfrum et al. (24) group. The notes contained 
analysis of their data using Mayhew's equation for 
the work required in bubble nucleation. Via e-mail, 
W. Lauterborn stated: "I just had found time to only 
quickly look through your calculations. As there is 
a perfect fit to our measurements, everything looks 
fine. Thus no comments from my side and I look 
forward to the publication." 
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